Extracting waves and vortices from Lagrangian trajectories

نویسندگان

  • J. M. Lilly
  • R. K. Scott
  • S. C. Olhede
چکیده

[1] A method for extracting time-varying oscillatory motions from time series records is applied to Lagrangian trajectories from a numerical model of eddies generated by an unstable equivalent barotropic jet on a beta plane. An oscillation in a Lagrangian trajectory is represented mathematically as the signal traced out as a particle orbits a time-varying ellipse, a model which captures wavelike motions as well as the displacement signal of a particle trapped in an evolving vortex. Such oscillatory features can be separated from the turbulent background flow through an analysis founded upon a complex-valued wavelet transform of the trajectory. Application of the method to a set of one hundred modeled trajectories shows that the oscillatory motions of Lagrangian particles orbiting vortex cores appear to be extracted very well by the method, which depends upon only a handful of free parameters and which requires no operator intervention. Furthermore, vortex motions are clearly distinguished from wavelike meandering of the jet—the former are high frequency, nearly circular signals, while the latter are linear in polarization and at much lower frequencies. This suggests that the proposed method can be useful for identifying and studying vortex and wave properties in large Lagrangian datasets. In particular, the eccentricity of the oscillatory displacement signals, a quantity which is not normally considered in Lagrangian studies, emerges as an informative diagnostic for characterizing qualitatively different types of motion. Citation: Lilly, J. M., R. K. Scott, and S. C. Olhede (2011), Extracting waves and vortices from Lagrangian trajectories, Geophys. Res. Lett., 38, L23605, doi:10.1029/2011GL049727.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-clustering approach to Lagrangian vortex detection.

One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract ...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Dynamics of wind-forced coherent anticyclones in open ocean

1 We numerically study the dynamics of coherent anticyclonic eddies in the ocean interior. For 2 the hydrostatic, rotating, stably-stratified turbulence we use a high-resolution, Primitive3 Equation model forced by small-scale winds in a idealized configuration. Many properties 4 of the horizontal motions are found to be similar to those of two-dimensional and quasi5 geostrophic turbulence. Maj...

متن کامل

Generation and reversal of surface flows by propagating waves

The ability to send a wave to fetch an object from a distance would find a broad range of applications. Quasi-standing Faraday waves on water create horizontal vortices1,2, yet it is not known whether propagating waves can generate large-scale flows—small-amplitude irrotational waves only push particles in the direction of propagation3–5. Here we show that when waves become three-dimensional as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011